更多>>精华博文推荐
更多>>人气最旺专家

路魁祯

领域:爱丽婚嫁网

介绍:浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48...

王钊

领域:网易新闻

介绍:快速不平衡缓慢很快农业革命前:极其缓慢农业革命期间:速度加快工业革命后:迅速增长近100年来:迅猛增长二、人口增长模式及其转变1.构成指标:、和。利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66

利来国际娱乐w66
本站新公告利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
y6i | 2018-12-16 | 阅读(111) | 评论(83)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
re4 | 2018-12-16 | 阅读(421) | 评论(500)
大象上船做上记号相同重量的石头换取大象大象下船**4.曹冲称象绿色圃中学资源网妈妈拿来一杆(),去()苹果。【阅读全文】
w55 | 2018-12-16 | 阅读(977) | 评论(65)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
qri | 2018-12-16 | 阅读(266) | 评论(85)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
ypl | 2018-12-16 | 阅读(842) | 评论(434)
林彪115师歼灭日军1000多人林彪概况二.抗日根据地的建立与发展1.建立抗日根据地《抗日根据地示意图》全面抗战爆发后,八路军和新四军挺进敌后,先后建立晋察冀、晋绥、晋冀豫、山东、苏南、陕甘宁等抗日根据地。【阅读全文】
5rd | 2018-12-15 | 阅读(814) | 评论(602)
美国、英国、荷兰、澳大利亚和日本等国家的图书馆也相继采取了RFID技术,并且取得了良好的实际效果。【阅读全文】
f4w | 2018-12-15 | 阅读(449) | 评论(222)
第2课 古代手工业的进步课程标准列举古代中国手工业发展的基本史实,认识古代中国手工业发展的特征。【阅读全文】
4hi | 2018-12-15 | 阅读(613) | 评论(789)
;;a)病情趋向稳定的重症患者;b)病情不稳定或随时可能发生变化的患者;c)手术后或者治疗期间需要严格卧床的患者;d)自理能力重度依赖的患者。【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
c4x | 2018-12-15 | 阅读(997) | 评论(119)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
ri3 | 2018-12-14 | 阅读(176) | 评论(639)
联邦项目“不喝酒的俄罗斯”的负责人苏塔娜·哈木扎耶娃表示:法国的酒精致死率尤其高,滥用酒精会大大提高患上肝硬化的几率。【阅读全文】
iea | 2018-12-14 | 阅读(532) | 评论(3)
完善国有资产管理体制。【阅读全文】
yk3 | 2018-12-14 | 阅读(83) | 评论(275)
市场经济既要发挥市场的决定性作用,又要发挥国家宏观调控的作用。【阅读全文】
jab | 2018-12-14 | 阅读(978) | 评论(501)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
2pv | 2018-12-13 | 阅读(609) | 评论(396)
这次研修班的培训,我更意识到教育不应该是空中楼阁,它应该是立足于生活的。【阅读全文】
c2s | 2018-12-13 | 阅读(552) | 评论(72)
并总结每次处理经验为日后的处理相类似问题做基础。【阅读全文】
共5页

友情链接,当前时间:2018-12-16

w66利来国际 利来ag 利来国际旗舰版 利来娱乐 利来娱乐国际
环亚娱乐ag88手机版 利来国际在线客服 www.w66.com 利来 www.w66.com 利来 利来娱乐w66
利来娱乐国际最给利老牌网站 利来娱乐老牌 利来国际老牌软件 利来国际W66 利来娱乐在线平台
w66利来娱乐 利来国际 利来娱乐 w66利来娱乐 利来国际手机客户端
聂荣县| 巫溪县| 三门峡市| 奎屯市| 松潘县| 达拉特旗| 广宗县| 临沭县| 那曲县| 花莲县| 肃宁县| 伊金霍洛旗| 南岸区| 阳东县| 巴东县| 筠连县| 铜陵市| 伊春市| 张家港市| 天台县| 昌宁县| 乐亭县| 广东省| 房产| 巩义市| 福贡县| 报价| 革吉县| 抚宁县| 沾益县| 子洲县| 青铜峡市| 宁远县| 韶关市| 文安县| 钦州市| 益阳市| 米脂县| 迭部县| 临漳县| 广元市| http:// http:// http:// http:// http:// http://